Find derivative (dy/dx) of function y = cos(sinx^2)

The given function is \( \displaystyle y = \cos(\sin x^2) \) and we need to find the derivative of this function with respect to \( x \).

Solution:

To find \( \displaystyle \frac{dy}{dx} \), we will apply the Chain Rule.

\( \begin{align*} &\frac{dy}{dx} = \frac{d \left( \cos(\sin x^2) \right)}{dx} \\ &= \frac{d \left( \cos(\sin x^2) \right)}{d (\sin x^2)} \cdot \frac{d (\sin x^2)}{d (x^2)} \cdot \frac{d (x^2)}{d x} \\ &= -\sin(\sin x^2) \cdot \cos x^2 \cdot 2x \\ &= -2x \cdot \sin(\sin x^2) \cdot \cos x^2 \\ \end{align*} \)

Thus, the derivative of the function is:

\( \boxed{ \frac{dy}{dx} = -2x \cdot \sin(\sin x^2) \cdot \cos x^2 } \)

Please let me know in the comments if you find any errors in this solution.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.