Find derivative (dy/dx) of function y = cos(x/(1+sqrt(x)))

The given function is \(\displaystyle y = \cos \left(\frac{x}{1+\sqrt{x}}\right) \) and we need to find the derivative of this function with respect to \( x \).

Solution:

Let \(\displaystyle u = \frac{x}{1+\sqrt{x}} \), then \( y = \cos(u) \).

First, find \(\displaystyle \frac{du}{dx} \) using the quotient rule:

\( \displaystyle \frac{du}{dx} = \frac{(1+\sqrt{x})\cdot \frac{d}{dx}(x)\, – x \cdot \frac{d}{dx}(1+\sqrt{x})}{(1+\sqrt{x})^2} \\ \displaystyle = \frac{(1+\sqrt{x})\cdot 1\, – x \cdot \left(\frac{1}{2\sqrt{x}}\right)}{(1+\sqrt{x})^2} \\ \displaystyle = \frac{1+\sqrt{x}\, – \frac{\sqrt{x}}{2}}{(1+\sqrt{x})^2} \\ \displaystyle = \frac{1 + \frac{\sqrt{x}}{2}}{(1+\sqrt{x})^2} \\ \displaystyle = \frac{2 + \sqrt{x}}{2(1 + \sqrt{x})^{2}} \\ \)

Now, apply the chain rule to find \(\displaystyle \frac{dy}{dx} \):

\( \displaystyle \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \\ \displaystyle = -\sin(u) \cdot \frac{2 + \sqrt{x}}{2(1 + \sqrt{x})^{2}} \\ \displaystyle = -\sin\left(\frac{x}{1+\sqrt{x}}\right) \cdot \frac{2 + \sqrt{x}}{2(1 + \sqrt{x})^{2}} \\ \)

Thus, the derivative of the function is:

\( \displaystyle \boxed{\frac{dy}{dx} = -\sin\left(\frac{x}{1+\sqrt{x}}\right) \cdot \frac{2 + \sqrt{x}}{2(1 + \sqrt{x})^{2}}} \\ \)

Please let me know in the comments if you find any errors in this solution.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.