If y = (cosx + sinx)/(cosx – sinx), prove that dy/dx = sec^2(pi/4 + x)

Given function is \( \displaystyle y = \frac{\cos x + \sin x}{\cos x\, – \sin x} \) and we need to prove that the derivative of this function with respect to \( x \) is \(\displaystyle \sec^2\left(\frac{\pi}{4} + x\right) \).

Proof:

We are given:

\( \displaystyle y = \frac{\cos x + \sin x}{\cos x\, – \sin x} \)

Divide numerator and denominator by \( \cos x \):

\( \displaystyle y = \frac{\frac{\cos x}{\cos x} + \frac{\sin x}{\cos x}}{\frac{\cos x}{\cos x}\, – \frac{\sin x}{\cos x}} \\ \displaystyle = \frac{1 + \tan x}{1\, – \tan x} \\ \displaystyle = \frac{\tan \frac{\pi}{4} + \tan x}{\tan \frac{\pi}{4}\, – \tan x} \\ \)

From the tangent addition formula:

\(\displaystyle \tan\left(\frac{\pi}{4} + x\right) = \frac{1 + \tan x}{1\, – \tan x} \)

Therefore, \(\displaystyle y = \tan\left(\frac{\pi}{4} + x\right) \)

Differentiate using the chain rule:

\( \displaystyle \frac{dy}{dx} = \sec^2\left(\frac{\pi}{4} + x\right) \cdot \frac{d}{dx}\left(\frac{\pi}{4} + x\right) \\ \displaystyle = \sec^2\left(\frac{\pi}{4} + x\right) \cdot 1 \\ \displaystyle = \sec^2\left(\frac{\pi}{4} + x\right) \\ \)

Hence, it is proved that: \(\displaystyle \boxed{\frac{dy}{dx} = \sec^2\left(\frac{\pi}{4} + x\right)} \)

Please let me know in the comments if you find any error in this solution.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.